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Cytokine signaling via a restricted number of Jak-Stat pathways positively and negatively regulates all cell
types involved in the initiation, propagation, and resolution of inflammation. Here, we focus on Jak-Stat sig-
naling in three major cell types involved in inflammatory responses: T cells, neutrophils, and macrophages.
We summarize how the Jak-Stat pathways in these cells are negatively regulated by the Suppressor of
cytokine signaling (Socs) proteins. We emphasize that common Jak-Stat-Socs signaling modules can have
diverse developmental, pro- and anti-inflammatory outcomes depending on the cytokine receptor activated
and which genes are accessible at a given time in a cell’s life. Because multiple components of Jak-Stat-Socs
pathways are mutated or closely associated with human inflammatory diseases, and cytokine-based thera-
pies are increasingly deployed to treat inflammation, understanding cytokine signaling will continue to ad-
vance our ability to manipulate chronic and acute inflammatory diseases.
Introduction
The importance of inflammation as a driver of pathology is no

longer confined to autoimmune and infectious diseases. Rather,

inflammation is increasingly linked to chronic diseases such as

coronary artery disease, obesity, and cancer (Lin and Karin,

2007). The role of cytokines in immunoregulation and inflamma-

tion is well established, and multiple genome-wide association

studies have documented that polymorphisms and mutations

of cytokine receptors and their signaling components contribute

to autoimmune disorders such as diabetes, inflammatory bowel

disease, multiple sclerosis, and the spondyloarthropathies.

Moreover, anticytokine therapies such as antitumor necrosis

factor-a neutralizing agents are now commonplace in the treat-

ment of chronic inflammatory diseases (Feldmann and Maini,

2003). However, for understanding underlying disease mecha-

nisms and generating new therapies, it is necessary to define

how cytokines work to program gene expression and how their

signaling pathways are regulated in different types of immune

cells.

For the type I and type II cytokine superfamilies, we know

a great deal about the mechanisms of signal transduction.

Investigation of the signaling pathways emanating from these

receptors led to the discovery of the Janus kinase (Jak)-signal

transducer and activator of transcription (Stat) pathway. This

field has been reviewed many times, but a number of recent

advances have provided important new insights into how the

Jak-Stat pathway contributes to inflammation in terms of regu-

lating the differentiation and pro- and anti-inflammatory activity

of immune cells that will be the focus of this review. The develop-

mental fates for differentiating T cell subsets such as T helper 17

(Th17) and Treg cells have uncovered new paradigms for inflam-

matory diseases: Stat family transcription factors and their cor-

rect quantitative and temporal regulation are critical for the de-

velopment of these T cell subsets. Paradoxically, some factors,

such as Stat3, have both pro- and anti-inflammatory actions,
depending upon the cell- and stimulus-specific context. By

focusing on the use of Stat transcription factors and their regu-

lation in the differentiation and function of T cells, granulocytes,

and macrophages in the context of inflammation, we will attempt

to deconvolute the seemingly ubiquitous use of Stat pathways

(especially Stat1, Stat3, Stat5a, and Stat5b) for developmental

and functional uses, often in the same cell type.

Overview of a Stat Signaling Module
Type I and II cytokine receptors are a conserved family, consist-

ing of�40 members, that includes the receptors for interleukins,

interferons, and hormones such as growth hormone, leptin, and

erythropoietin and colony stimulating factors (CSF) such as gran-

ulocyte-CSF and granulocyte-macrophage CSF (Boulay et al.,

2003). Unlike other receptors with intrinsic enzyme activity

(e.g., kinase or phosphatase), cytokine receptors are associated

with a tethered kinase. These cytoplasmic kinases comprise the

four members of the Jak family: Jak1, Jak2, and Tyk2 bind to an

array of receptors, whereas Jak3 binds to only one receptor, the

common gamma chain, or gc. Mutations of JAK3 or TYK2 in

humans lead to specific primary immunodeficiency syndromes

designated severe combined immunodeficiency (SCID) and au-

tosomal-recessive hyperimmunoglobulin E syndrome (AR-HIES)

(Minegishi et al., 2007; Notarangelo et al., 2001; Watford and

O’Shea, 2006). Additionally, the roles of the four Jak proteins

have been elucidated through the generation of genetically defi-

cient mice, and specific functions of each Jak member have

been assigned (Murray, 2007). Because of their kinase activity,

Jak proteins are potential targets for small molecule inhibition.

For Jak3, its restricted association with gc has made Jak3 an at-

tractive therapeutic target as an immunosuppressive drug that

can primarily target activated T cells (O’Shea et al., 2004b).

Upon cytokine binding to their cognate receptor, the receptor-

associated Jaks are activated and in turn phosphorylate tyrosine

residues in the receptor cytoplasmic domain. This event
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Figure 1. Cytokine Signaling in T Cell Development and Function
(A) Stat5 signaling from cytokines that use gc is essential for T cell development. Mice or humans lacking key components of this pathway (gc, Jak3, and Stat5) fail
to develop T cells.
(B) Stat5 signaling controls the development of FoxP3-positive Treg cells in part through the direct activation of Foxp3 gene expression.
(C) Stat3 is crucial to the development and function of Th17 cells. IL-23 and IL-6 enforce Th17 cell development via the direct or indirect induction of Rorc and Rora
expression. Stat3 also regulates the expression of IL-17-encoding genes and Il21, which acts in an autocrine-paracrine way to regulate Th17 cells. Socs3 is an
important inhibitor of cytokines that use gp130 (IL-23R and IL-6R), whereas Socs1 is anticipated to inhibit any cytokines that use gc (IL-7, IL-21 as shown).
provides a docking site for proteins with Src homology 2 do-

mains, one important class of which is the Stat family of tran-

scription factors. With seven members in all (Stat1, Stat2,

Stat3, Stat4, Stat5a, Stat5b, and Stat6), these DNA-binding pro-

teins provide a rapid membrane to nucleus mechanism for regu-

lation of gene expression (Shuai and Liu, 2003).

Role of Stats in T Cell Development and Differentiation
Given the importance of cytokines in T cell development, differ-

entiation, and function, it is no surprise that Stat proteins contrib-

ute critically to each of these processes (Figure 1). As an example

of the overall importance of cytokine-cytokine receptor-Jak-Stat

pathway signaling in thymic T cell development, IL-7 signaling

ensures development of appropriate lymphocyte numbers. Mu-

tation of either IL-7R subunit, IL-7Ra or gc (encoded by IL2RG),

or its cognate Jak, JAK3, lead to SCID manifested by severely

reduced numbers of thymocytes (O’Shea et al., 2004a). IL-7

activates Stat5a and Stat5b, and deletion of the locus encoding

Stat5a and Stat5b also results in a severe SCID phenotype (Yao

et al., 2006). Indeed, Stat5 activity is required for the normal de-

velopment of all normal lymphoid lineages. However, the abso-

lute role of Stat5 in permitting normal T cell development is

only part of Stat5’s contribution to T cell subset development

discussed below.

Differentiating CD4+ T cells were thought to have two fates—

Th1 and Th2 cells. These fates are driven by the cytokine milieu

with IL-12 driving Th1 cell differentiation and IL-4 promoting Th2

cell differentiation. IL-12 activates Stat4, whereas IL-4 activates

Stat6. Stat4- and Stat6-deficient mice have impaired Th1 and

Th2 cell responses, respectively (O’Garra and Arai, 2000). The

products of Th1 and Th2 T cells, IFN-g and IL-4, respectively,

promote commitment to their respective lineages and inhibit

development of the opposing lineage. Surprisingly, a recent ge-

nome-wide association study has revealed that polymorphisms

in STAT4 confer risk of developing autoimmune diseases includ-

ing rheumatoid arthritis (RA) and systemic lupus erythematosus
478 Immunity 28, April 2008 ª2008 Elsevier Inc.
(SLE) (Remmers et al., 2007). Although RA has typically been

viewed as having elements consistent with Th1-cell-mediated

pathology, SLE would not be considered a prototypic Th1 cell

disease. In this regard, it is important to note that type I IFNs

also activate Stat4. Depending upon the circumstance, type I

IFN signaling may enhance or inhibit Th1 cell responses (Nguyen

et al., 2002). Although the pathogenesis of SLE is very poorly

understood, recent advances have documented that SLE and

related autoimmune disorders are characterized by a transcrip-

tional ‘‘interferon signature.’’ Exactly how Stat4 and IFNs

contribute to the pathogenesis of SLE is unknown, but this will

be an important area to follow.

As important as the Th1-Th2 paradigm was in advancing our

understanding of T cell biology, CD4+ T cells are now known to

have additional fates regulated by Stat3 and Stat5. One subset

of CD4+ T cells is termed regulatory T (Treg) cells, which express

the transcription factor Foxp3 (Figure 1B). Treg cells have essen-

tial immunosuppressive functions as illustrated by the fact that

deletion or mutation of Foxp3 leads to fatal autoimmune disease

in mice and humans. CD4+ Treg cells can be generated in the thy-

mus (‘‘natural’’ Treg cells) or can be induced in the periphery (iTreg

cells). In both cases, cytokines that use gc are important drivers of

Treg cell development. Deficiency of gc or Jak3 causes a failure to

produce Foxp3-positive regulatory T cells (Mayack and Berg,

2006). Accordingly, deficiency of both Stat5a and Stat5b also

leads to loss of Treg cells and inability to induce Treg cells in vitro

(Yao et al., 2007), whereas constitutive activation of Stat5b

enforces Foxp3-positive Treg cell development, bypassing the

requirements for upstream cytokine or costimulatory signals

(Burchill et al., 2008). Stat5 appears to have very direct effects

on Treg cells in that these transcription factors bind directly to

the Foxp3 gene. Thus, even though Stat5 is absolutely required

for T cell development, once T cells have developed and exited

the thymus,additional Stat5-dependent signals are needed to en-

sure correct subset development and function. One way to think

about the requirement for Stat5 to have such diverse functions in
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T cell development is to consider that cytokine signaling via Stat5,

and gene accessibility to Stat5, is partitioned throughout the life of

the T cell: Whereas IL-7-Jak3-Stat5 signaling is predominant for

thymic development, other Stat5-activating receptors stimulate

T cells and activate different combinations of Stat5-dependent

genes after maturation and exit from the thymus.

Another recently recognized fate for CD4+ T cells is the Th17

cell (also discussed by the other reviews in this issue of Immunity

by McGeachy and Cua [2008] and Ouyang et al. [2008]) whose

development and function is critically dependent on Stat3.

Named for their ability to produce the inflammatory cytokine

IL-17, Th17 cells recruit and activate neutrophils and other in-

flammatory cells to sites of tissue inflammation (Korn et al.,

2007). Th17 cells can be generated from naive CD4+ T cells by

IL-6 and TGF-b but can also produce another cytokine IL-21,

which promotes IL-17 production in an autocrine-paracrine

manner (Nurieva et al., 2007; Zhou et al., 2007). Finally, a third cy-

tokine, IL-23, acts on memory cells to expand and maintain Th17

cells. The importance of IL-23 signaling in inflammation is exem-

plified by recent discoveries that polymorphisms in IL23R are

associated with increased risk of inflammatory bowel disease,

ankylosing spondylitis, and psoriasis (Burton et al., 2007; Cargill

et al., 2007; Duerr et al., 2006; Tremelling et al., 2007).

IL-6, IL-21, and IL-23 all activate Stat3 via their cognate recep-

tors (Figure 1C). Accordingly, selective deletion of Stat3 in T cells

abrogates Th17 cell differentiation in part because the expres-

sion of RORgt and RORa, two nuclear hormone receptors es-

sential for Th17 cell development, is also abrogated (Yang

et al., 2008). However, Stat3 also directly regulates the expres-

sion of Il21 and Il17 (Chen et al., 2006; Wei et al., 2007). Therefore

Th17 cell fate, peripheral maintenance by IL-21, and effector

functions are all regulated by Stat3 signaling from different cyto-

kine receptors. The importance of Stat3 in Th17 cell develop-

ment and function is exemplified by the fact that patients with

Job’s syndrome, an autosomal-dominant disorder due to Stat3

mutations, fail to make Th17 cells (Milner et al., 2008). Parenthet-

ically, it is interesting to note that IL-2 acting through Stat5 in-

hibits Th17 cell differentiation (Laurence et al., 2007). Thus, the

balance of Treg and Th17 cell differentiation appears to be reg-

ulated by Stat5 and Stat3. Clearly, the use of one transcription

factor to perform all these functions indicates that Stat3 activity

is under tight control throughout the life of a Th17 cell, a task

performed in part by Socs3 (discussed below).

An additional complexity of Th17 T cells in inflammation con-

cerns the Stat3-activating cytokine IL-22 (IL-22 signaling is dis-

cussed below.). Th17 cells preferentially produce IL-22, but its

regulation is subtly different from IL-17; whereas IL-6 and TGF-

b-1 are important for the differentiation of Th17 cells, IL-6 alone

so far appears to be capable of inducing IL-22. The pathways for

generating IL-22 are discussed in accompanying reviews in this

issue by Ouyang et al. (2008), Li and Flavell (2008), and

McGeachy and Cua (2008). However, Th17 cells are not the

only cells capable of producing IL-22, and the extent to which

this cytokine expression is dependent upon which Stat proteins

remains to be determined. Perhaps more important are the up-

stream cytokine signals that drive IL-22 production from Th17

cells at sites of tissue inflammation.

In summary, even though Stat5 is absolutely required for nor-

mal T cell development, once T cells have developed and exited
the thymus, additional Stat5 and Stat3 signals are needed to en-

sure correct subset development and function. Stats have direct

and essential roles in helper T cell development, lineage commit-

ment, and function as they bind and presumably regulate genes

such as Foxp3, Il17a, and Il21. The actions of these Stats may be

direct or indirect but clearly warrant further investigation in defin-

ing direct Stat targets in T cells and the mechanisms by which the

induce transcriptional programs.

SOCS Proteins Control Inflammatory Responses
by Regulating Stat Signaling
Upon cytokine stimulation, a family of cytokine-induced inhibi-

tors termed suppressors of cytokine signaling (Socs proteins)

is rapidly induced. The predominant function of Socs proteins

is to block the generation of the Stat signal from a cytokine

receptor (Alexander and Hilton, 2004; Yoshimura et al., 2007).

Importantly, the genes encoding the Socs proteins are direct

targets of Stat proteins; the Jak-Stat cascades thereby control

their own signaling output by feedback inhibition. Although there

are eight Socs proteins, genetic evidence from mice and cells

lacking Socs1 and Socs3 unequivocally shows that these two

Socs proteins are necessary to reduce the overall signaling

output from their target receptors (Alexander and Hilton, 2004;

Yoshimura et al., 2007). The Socs1- and Socs3-mediated mod-

ulation in signaling from cytokine receptors therefore has pro-

found effects on the regulation of immunity and inflammation

by affecting the activation, development, and homeostatic func-

tions of all lineages involved in immune and inflammatory

responses.

A major question in understanding the activities of Stat-Socs

modules concerns the biochemical mechanism of how Socs

proteins block cytokine-receptor signaling. Each of the eight

Socs proteins have two major domains, an SH2 domain and

a Socs box that complexes with elongins B and C, a cullin and

Rbx2, to form a E3 ubiquitin ligase (Kile et al., 2002; Zhang

et al., 1999). The Socs SH2 domains bind phosphorylated tyro-

sine residues in their substrates. The best characterized Socs

substrates are specific tyrosine residues in the cytoplasmic tails

of cytokine receptors. In addition, the Socs SH2 domain has the

potential to bind other phosphotyrosine residues and thereby

regulate the activity of a wide range of proteins. The current

model of Socs function postulates that the E3 activity of

a Socs protein will target the substrate to be ubiquitinated and

then directed to the proteosome for degradation. However,

genetic studies using mice that lack the Socs box of Socs1 or

Socs3, but that are engineered to retain the SH2 domains of

each protein, indicate that the SH2 and Socs box domains

don’t always function in concert because the phenotypes of

mice lacking the Socs box of Socs1 or Socs3 are dramatically

less severe than the corresponding conventional knockouts

(Boyle et al., 2007; Zhang et al., 2001). These data suggest

that the SH2 domain of Socs1 and Socs3 alone can block

cytokine-receptor signaling. Thus, the mechanistic relationship

between the SH2 and Socs box domains remains unresolved,

as does the contribution of E3 ligase activity to Socs function.

A second outstanding question concerns the mechanism by

which a Socs protein, tethered to a specific residue of a cytokine

receptor, inhibits the generation of activated Stats. An obvious

possibility is that a Socs protein directs its receptor substrate
Immunity 28, April 2008 ª2008 Elsevier Inc. 479
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to be degraded. At least for gp130, a substrate of Socs3, this

does not seem to be the case (Lang et al., 2003). Another possi-

bility is that Socs proteins promote ubiquitination of Stat proteins

in the vicinity of the receptor; however, this does not agree with

the restricted requirement for the Socs box of Socs1 or Socs3

compared to the absolute requirement for the intact proteins

and their SH2 domains. A third possibility is that a tethered

Socs protein inhibits the activity of tethered JAK proteins through

effective concentration-type effects that remain uncharacterized

(Kamizono et al., 2001; Stross et al., 2006; Yoshimura et al.,

2007). At this stage, the biochemical mechanism(s) of Socs-

mediated inhibition of Stat signaling remains unknown.

Stat3-Socs3 Regulates Homeostatic and Emergency
Granulopoiesis
Neutrophils are made in prodigious numbers every day of our

lives to patrol tissue surfaces, especially the lung and skin, for

invading microorganisms, which they then target for elimination

by a variety of mechanisms including the oxidative burst (Eyles

et al., 2006). The role of neutrophils can be seen in the conse-

quences of ablative chemotherapy and in people with severe

congenital neutropenias. In chemotherapy, depletion of bone-

marrow precursors by ablative drugs causes a precipitous

drop in numbers of short-lived, mature, circulating neutrophils.

Many patients undergoing ablative chemotherapy have infec-

tions caused by fungi and bacteria normally innocuous for the

immune competent. A similar situation is found in people with

genetic deficiencies in neutrophil number or function. However,

G-CSF administration can rescue, in part, the devastating drop

in neutrophils numbers by stimulating maturation and exit of

neutrophils from the bone marrow (Eyles et al., 2006). G-CSF

has become a standard of care in clinical settings where deple-

tion of neutrophil numbers can be anticipated and is therefore

a triumph of directed cytokine therapy. G-CSF therapy is also

highly effective in treating some cases of congenital neutrope-

nias in which bone-marrow precursors remain responsive to

G-CSF. By contrast to the protective functions of neutrophils,

excessive neutrophil numbers are found in a plethora of inflam-

matory diseases, especially those involving tissue surfaces

colonized by bacteria and fungi, including chronic obstructive

pulmonary disease, asthma, cystic fibrosis, and different forms

of colitis (Eyles et al., 2006). Therefore, neutrophils numbers and

function require precise control so that tissue homeostasis can

be maintained without causing destructive inflammation. This

process is controlled to a large extent by Stat3 and Socs3 (Fig-

ure 2).

The G-CSFR is responsible for transducing the signals from

G-CSF via four tyrosine residues located in the cytoplasmic tail

of the receptor. G-CSFR signaling via the cytoplasmic tyrosines

activates numerous signaling molecules including Stat5, Stat3,

and MAP kinases. Deletion of all cytoplasmic tyrosines yields

a receptor that does not elicit detectable Stat3 or Stat5 (but

can probably activate low levels of Stat activation) (McLemore

et al., 2001). Mice bearing knockin mutations of the G-CSFR

with all tyrosines eliminated have very low (but not entirely ab-

sent) circulating neutrophil numbers and severe defects in the

emergency mobilization of neutrophils after G-CSF administra-

tion (McLemore et al., 2001). A surprising complication of the

analysis of Stat3 in neutrophil development and function was ob-
480 Immunity 28, April 2008 ª2008 Elsevier Inc.
served when Stat3 or Socs3 was conditionally ablated in early

hematopoetic development (Croker et al., 2004; Kimura et al.,

2004; Lee et al., 2002). In both cases, excessive numbers of

late-stage neutrophils accumulate in the bone marrow and pe-

ripheral blood. A conclusion of these studies was that Stat3

and Socs3 are negative regulators of granulopoiesis (Lee et al.,

2002). Indeed, Socs3 binds to one of the tyrosine residues in

the G-CSFR (Y729) and restricts the amplitude of Stat3 signaling

(Hortner et al., 2002). Thus, loss of Socs3 causes increased

G-CSFR signaling leading to increased neutrophil numbers,

whereas loss of Stat3 (and failure to induce Socs3 expression)

also leads to increased neutrophil numbers. How can we recon-

cile these data? The logical conclusion is that Socs3 negatively

regulates neutrophil numbers by regulating G-CSFR signaling

generally and not via specific inhibitory effects on Stat3. In the

absence of Socs3, there is likely to be elevated signaling from

the G-CSFR, perhaps excessive Stat5 or MAP kinase signaling,

because Stat3 is no longer present to induce Socs3 to feedback

inhibit the signal from the G-CSFR. Therefore, a more detailed in-

vestigation of Stat and MAP kinase activation during neutrophil

development is warranted.

The function of the Stat3-Socs3 module in neutrophils is, how-

ever, more complex than outlined above. Deletion of either Stat3

or Socs3 at a later stage of neutrophil development with the

lysMcre deleter strain (where cre activity is predominantly at

the committed myeloid progenitor stage) does not lead to the

phenotypes described above. By contrast, the studies noted

above that demonstrated an essential requirement for Stat3

and Socs3 in regulating neutrophil numbers used deleter strains

for which Cre is active at the earliest stages of hematopoiesis

(Panopoulos et al., 2006). Thus, the Stat3-Socs3 module is re-

quired to regulate neutrophil numbers at a specific developmen-

tal stage. This restriction probably reflects the need for precision

in circulating neutrophil numbers because too many neutrophils

will drive inflammation. Finally, it is notable that Stat3 has addi-

tional Socs3-independent functions that control chemotaxis

and neutrophil migration in vivo (Panopoulos et al., 2006;

Semerad et al., 2002; Semerad et al., 1999). Therefore, the

Stat3-Socs3 signaling module has a restricted but critical role

in determining the quantity of neutrophils that mature in the

bone marrow and migrate to the peripheral tissues.

Figure 2. G-CSFR Signaling
Simplified schematic of G-CSFR signaling to illustrate that Stat3 and Stat5 are
regulated by the G-CSFR and that Socs3 is a key downstream target of Stat3.
Socs3 is required to feedback-inhibit G-CSFR signaling.
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The Stat3-Socs3 Module in Anti-inflammatory Signaling
Compared to the effects of the Stat3-Socs3 module on T cell and

neutrophil development and function described above, the

output of the Stat3-Socs3 pathway in IL-10R signaling is entirely

different (Figure 3). IL-10 is an anti-inflammatory cytokine that

is made by lymphocytes and myeloid lineage cells and that is

responsible for tempering the output of pro-inflammatory cyto-

kines from activated macrophages (Murray, 2006). The anti-

inflammatory functions of IL-10 extend to virtually every type of

acute and chronic inflammatory and infectious diseases. Unlike

the partial redundancy observed in many cytokine signaling sys-

tems, the anti-inflammatory functions of IL-10 cannot be com-

pensated by other factors because deletion of IL-10 in all cells

or only in T cells causes excessive inflammation, especially in

the gut in which IL-10 constitutively blocks inflammation driven

by gut flora (Berg et al., 1996; Kuhn et al., 1993; Roers et al.,

2004). Socs3 is highly induced by IL-10 but is not required to

feedback-inhibit IL-10R signaling or mediate any significant

anti-inflammatory effects of IL-10 (Lang et al., 2003; Yasukawa

et al., 2003). Instead, Socs3 induction by IL-10 is required to

block signaling from other cytokine receptors.

How does IL-10 mediate the anti-inflammatory response?

Stat3 is solely responsible for all the effects of IL-10 signaling

as shown by both loss-of-function experiments and gain-

of-function experiments using constitutively activated Stat3 or

cytokine receptors unrelated to the IL-10R engineered to acti-

vate Stat3 in a way similar to the IL-10R (El Kasmi et al., 2006;

Takeda et al., 1999; Williams et al., 2007). Importantly, leuko-

cytes isolated from humans bearing mutations in STAT3 and suf-

fering from Job’s syndrome, are characterized the overproduc-

tion cytokines and chemokines following stimulation with TLR

agonists, bacteria and interferons (Holland et al., 2007; Minegishi

et al., 2007; Milner et al., 2008). This phenotype is indicative of

a failure of IL-10R signaling. The obligate role of Stat3 in anti-in-

flammatory signaling suggests a conundrum: If Stat3 is activated

by the IL-10R to elicit the anti-inflammatory response, then why

don’t other receptors that activate Stat3 also activate anti-

inflammatory signaling? The answer to this question centers on

the highly specific inhibitory effects of Socs3 on gp130, the sig-

naling receptor of the IL-6 family of cytokines. Gp130 has multi-

ple tyrosine residues in its cytoplasmic tail, all of which bar one,

Y757, serve as docking sites for Stat proteins (especially Stat3).

Y757 docks the SH2 domain of Socs3 and is by far the best-

characterized Socs-cytokine receptor interaction (Hirano and

Murakami, 2006; Kamimura et al., 2003). Deletion of Socs3

increases Stat3 signaling from gp130 and, surprisingly, also in-

creases Stat1 signaling leading to an ectopic interferon response

(Croker et al., 2003; Lang et al., 2003). Therefore, Socs3 controls

the quality and quantity of Stat activation (either Stat3 or Stat1)

mediated by gp130. Yoshimura and colleagues also showed

that when Socs3 was absent, IL-6 via gp130-mediated Stat3 ac-

tivation induces an anti-inflammatory response identical to the

IL-10R, a finding that has since been confirmed with multiple ex-

perimental approaches (El Kasmi et al., 2006; Yasukawa et al.,

2003). Collectively, these data suggest that Stat3 activation

from one receptor, in this case gp130, can generate qualitatively

distinct Stat3 signals. Thus, Stat3 signaling from gp130 is con-

vertible between different modes depending on the Socs3 status

of the cell. One mode is anti-inflammatory Stat3 signaling like the
IL-10R that is actively repressed by Socs3. The other mode is

non-anti-inflammatory Stat3 signaling. Because a wide range

of stimuli regulates Socs3 expression, repression of anti-inflam-

matory signaling from gp130 must be advantageous for reasons

we do not yet appreciate.

These findings affect how we interpret signals the drive pro-

and anti-inflammatory signaling from cells receptive to multiple

cytokines for two reasons. First, the anti-inflammatory signal

generated from the IL-10R is not unique to the IL-10R but is ac-

tively suppressed from other receptors by Socs3. Second, Stat3

activation is not generic and the readout of tyrosine phosphory-

lation as an activation marker is insufficient to tell us about the

downstream consequences of Stat3 activation from one recep-

tor versus another (Murray, 2007). Thus in macrophages, Stat3

tyrosine phosphorylation is activated by signaling through both

the IL-10R and IL-6R but activates overlapping but distinct

gene-expression profiles (Socs3 is an example of a common

gene.). ChIP-sequencing techniques will have the final say on

this issue because it should be possible to determine what genes

bind Stat3 at a given time after IL-6 or IL-10 stimulation.

Figure 3. Mechanisms Associated with Socs3-Mediated
Suppression of Anti-inflammatory Signaling by the IL-6R
The left side depicts IL-10 signaling in a macrophage activated by the TLR
pathway (or other similar inflammatory stimuli). Socs3 expression is strongly
induced by IL-10, along with the Stat3-dependent genes whose products reg-
ulate the anti-inflammatory signaling system (‘‘anti-inflammatory response’’
AIR gene whose identity has yet to be determined) illustrated as inhibiting
the expression at the transcriptional level of classic pro-inflammatory genes.
On the right side is shown IL-6 signaling via gp130, which also activates
Socs3 expression along with other Stat3-dependent genes. Unlike the IL-
10R, however, the IL-6R cannot activate the expression of the AIR gene(s) un-
less Socs3 is absent. Thus, IL-6 and IL-10 (and any other receptors that acti-
vate Socs3 expression in macrophages) enforce the inability of the IL-6R to
produce the anti-inflammatory response. Note that Socs3 (or any other Socs
protein) does not inhibit the IL-10R.
Immunity 28, April 2008 ª2008 Elsevier Inc. 481
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Is IL-22 Pro- or Anti-inflammatory?
IL-22 is grouped with IL-10 because both the IL-10R and IL-22R

share the IL-10Rb chain (along with IL-26 and IL-28 that also use

the IL-10Rb chain), and like the IL-10R, the IL-22R activates

Stat3 (Donnelly et al., 2004). However, the IL-22R is not ex-

pressed on hematopoietic lineage cells but rather expressed

on cells of the skin epithelia, pancreas, and hepatocytes (Don-

nelly et al., 2004). The source of IL-22 is predominantly T cells,

leading to the idea that IL-22 is a pro-inflammatory cytokine

made by T cells to drive tissue inflammation. How correct is

this assumption? New information has now linked IL-22 more

closely to Th17 T cells, suggesting the potential for IL-22 to drive

tissue inflammation and to function in host defense (Liang et al.,

2006) (and discussed by Ouyang et al. [2008]). However, other

experiments suggest the opposite, that IL-22 may be an anti-in-

flammatory cytokine and has the potential to behave as an IL-10-

like cytokine for nonhematopoietic tissues (Figure 4). The Flavell

and Reynaud groups have recently described two independent

IL-22-deficient mouse strains. The former used a mouse model

of hepatitis to demonstrate that IL-22 is an essential anti-inflam-

matory mediator in the liver because IL-22-deficient mice had

greatly increased liver damage and inflammation after conca-

navalin treatment (Zenewicz et al., 2007). Additional studies in

liver-damage models also support the notion that IL-22 plays

an anti-inflammatory, protective role in the liver (Pan et al.,

2004; Radaeva et al., 2004). In an elegant and technically chal-

lenging model of ulcerative colitis, IL-22 administration via pres-

surized local microinjection of IL-22-expressing vectors was

shown to have a robust anti-inflammatory effect in the intestine

mediated in part via Stat3 activation in colonic epithelial cells

(Sugimoto et al., 2008). These results implicate IL-22 as a cyto-

kine that protects against inflammatory damage, and IL-22 can

therefore be considered anti-inflammatory. By contrast, how-

ever, IL-22-deficient mice develop EAE indistinguishable from

controls, suggesting IL-22 plays neither a protective nor dis-

ease-exacerbating role in this key model of Th17 T cell function

(Kreymborg et al., 2007). These experiments do not readily

square with skin-inflammation models in which a pro-inflamma-

tory role of IL-22 has been described by multiple laboratories

(Boniface et al., 2005; Boniface et al., 2007; Ma et al., 2008;

Wolk et al., 2004; Zheng et al., 2007), and recent studies that

show protective roles of IL-22 in mucosal defense against path-

ogens (Aujla et al., 2008; Zheng et al., 2008), in which IL-22

induces the expression of antimicrobial proteins, including

S1008A, a zinc and manganese chelating protein that deprives

bacteria of essential cations (Corbin et al., 2008). Clearly, more

detailed experiments in tissue-inflammation models need to be

performed with IL-22-deficient mice along with mice yet to be re-

ported that can track IL-22-producing cells and IL22Ra knockout

mice.

Reconstitution experiments performed with the IL-22Ra argue

however that IL-22 generates anti-inflammatory signals via Stat3

(Figure 3). When the IL-22Ra chain is expressed in primary mac-

rophages, it can use the endogenous IL-10Rb chain to form a

mature signaling complex. Upon stimulation with IL-22 in the

presence of a strong inflammatory signal from LPS, the IL-22R

activates a Stat3-dependent signaling cascade indistinguish-

able from the IL-10R itself (El Kasmi et al., 2006). Furthermore,

like the IL-10R, Socs proteins do not regulate the IL-22R in this
482 Immunity 28, April 2008 ª2008 Elsevier Inc.
system. Therefore, the IL-22 is functionally equivalent to the IL-

10R in macrophages. The key question is whether an anti-inflam-

matory Stat3 pathway can be elicited by the IL-22R in naturally

IL-22-responsive cells such as hepatocytes and keratinocytes

and whether any of the Socs proteins regulate IL-22R signaling

in these cells. The in vivo data described above indicate that he-

patocytes and keratinocytes respond very differently to IL-22.

Therefore, ChIP-seq experiments for IL-22-activated Stat3 in

these two cell types would be an ideal experiment. It should be

pointed out that anti-inflammatory functions of Stat3 have

been recognized in nonmyeloid cells for some time. For example,

deletion of Stat3 in epithelial lineage cells renders mice sensitive

to the pro-inflammatory effects of LPS, whereas established

nonhematopoietic tumor lines use Stat3 as a method of sup-

pressing the production of inflammatory markers in order to es-

cape host immune recognition (Kano et al., 2003; Kortylewski

et al., 2005; Wang et al., 2004). Additionally, Stat3 inactivation

in keratinocytes causes fulminant skin inflammation, demon-

strating the protective effects of Stat3 function in skin (Sano

et al., 1999). An important question that stems from these find-

ings is whether the Stat3-dependent anti-inflammatory gene-

expression patterns generated in myeloid lineage cells by the

IL-10R are functionally identical to those generated by the

IL-22R in nonhematopoietic cells. This problem should be re-

solved when the downstream Stat3-dependent mediators of

the anti-inflammatory signal are identified and functionally linked

to inhibition of inflammatory mediator production.

The Stat1-Socs1 Module and Inflammation
The Stat1-Socs1 module primarily regulates interferon signaling

(Alexander and Hilton, 2004). Disruption of this pathway has pro-

found effects on immune and inflammatory responses in addition

to controlling crosstalk with Stat3-Socs3 signaling from other

cytokine receptors. The regulation of Stat1 activation by the

interferon response, and its downstream effects has been com-

prehensively reviewed (Platanias, 2005; Shuai and Liu, 2003; van

Figure 4. IL-22R Signaling
Hypothetical schematic of tissue-specific effects of Stat3 activation by the IL-
22R. In hepatocytes, IL-22 activates an anti-inflammatory gene-expression
program, whereas the opposite occurs in skin. Socs3 is expected to be a com-
mon target gene in each tissue.
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Boxel-Dezaire et al., 2006). We will focus instead on Socs1 be-

cause of its unique role in controlling inflammation. Socs1, unlike

the broad expression of Socs3, is activated predominantly by

interferon signaling, although other cytokines such as IL-4 also

activate Socs1 expression but in a cell-type-dependent way.

The effects of interferon activation of Socs1 were first shown

to have a critical effect in blocking IFN-g signaling: Mice lacking

Socs1 die a few days after birth from a massive systemic inflam-

matory response that can be predominantly rescued by deletion

of Ifng. Socs1�/�; Ifng�/� mice outlived Socs1�/� mice by

months to years but nevertheless still die prematurely compared

to wild-type controls (Alexander et al., 1999). (Socs1+/� also die

prematurely but of a different inflammatory syndrome [Metcalf

et al., 2000].) Subsequent extensive genetic analysis using

Socs1�/� mice or Socs1 conditionally deficient mice crossed

to deficiencies in immune and inflammatory pathways has re-

vealed that whereas the IFN-gR is the primary target of Socs1,

other cytokine receptors also respond to the negative effects

of Socs1 including the gc, IL-12R, IFN-abR, and IL-4Ra (Alexan-

der and Hilton, 2004; Yoshimura et al., 2007). Therefore, Socs1

has a dominant effect on the IFN-gR, but additional inhibitory ef-

fects have been revealed by compound mutations that regulate

other cytokine receptors.

Even though the majority of pro-inflammatory effects of exces-

sive IFN-g signaling caused by loss of Socs1 can be rescued by

removal of IFN-g or its signaling components (IFN-gR and Stat1),

Socs1�/�; Ifng �/� mice remain extremely sensitive to systemic

challenge with LPS (Kinjyo et al., 2002; Nakagawa et al., 2002).

This finding led to the idea that Socs1 additionally regulates

components of the TLR cascade, including IRAK1 and the p65

subunit of NF-kB (Kinjyo et al., 2002; Nakagawa et al., 2002;

Ryo et al., 2003). These findings have been challenged

because analysis of TLR signaling in macrophages isolated

from Socs1�/�; Ifng�/�mice or macrophages engineered to con-

stitutively express Socs1, Socs2, or Socs3 showed no direct ef-

fects of Socs1 on the main TLR signaling pathways, including tol-

erance to LPS (Baetz et al., 2004; Gingras et al., 2004). The same

studies also concluded that instead of direct effects of Socs1 on

TLR signaling components, Socs1 instead caused indirect ef-

fects by regulating the signaling output of the IFN-abR: Because

TLR signaling induces autocrine-paracrine IFN-a-b production,

this might underlie the cause of LPS sensitivity in Socs1�/�;

Ifng�/� mice.

Subsequent work using sensitive assays for the effects of

Socs1 on the IFN-abR has definitively shown that Socs1 is an ir-

replaceable regulator of IFN-abR activity (Fenner et al., 2006). At

this stage, however, the potential for Socs proteins to regulate

one or more non-cytokine-receptor signaling components in

TLR signaling remains open. Mansell et al. have demonstrated

that Socs1 can bind to and regulate the degradation of Mal

(also known as TIRAP), an adaptor molecule specifically associ-

ated with TLR2 and TLR4 signaling (Mansell et al., 2006). Previ-

ous studies had shown that the tyrosine kinase Btk phosphory-

lates Mal, providing binding sites for Socs1 (Gray et al., 2006).

However, enforced expression of Socs1 has no effect on LTA

signaling via TLR2 and LPS signaling via TLR4, and as noted

above, loss of Socs1 has no obvious effects on LPS signaling

(Baetz et al., 2004; Gingras et al., 2004). Collectively, these stud-

ies indicate that more work is required to establish specific
targets of Socs proteins during inflammatory response and, in

this circumstance, TLR signaling.

Socs1 and Socs3 Have Precise Roles in Regulating
T Cell Development and Function
So far, we have emphasized that Socs1 and Socs3 have precise

functions in regulating a subset of cytokine receptors. Consistent

with this idea, Socs1 and Socs3 also have very defined roles in

controlling T cell development and function. For testing the

T cell-specific functions of Socs1 and Socs3, conditionally defi-

cient mice have been employed; these mice sidestep the com-

plexities associated with conventional genetic deficiency of

these key Socs proteins. Consistent with preference of Socs3

for gp130, loss of Socs3 in T cells has no effect on Th1 or Th2

cell development (or overall T cell development in the thymus)

but is instead required for the IL-6- and IL-23-mediated effects

on Th17 T cells, both of which signal via gp130 (Chen et al.,

2006; Wong et al., 2006). Indeed, loss of Socs3 enhances

IL-17 production from Th17 cells by increasing the amount of

Stat3 recruited to Il17a and Il17f (Figure 1C). Once again, the es-

sential effects of Socs3 are highly restricted.

Although deficiency in Socs1 causes a profound and lethal in-

flammatory syndrome mediated predominantly by IFN-g-pro-

ducing T cells, loss of Socs1 only in T cells does not recapitulate

any of the inflammatory pathology seen in the conventional

Socs1-deficient mice (Chong et al., 2003). Instead, Socs1 regu-

lates T cell numbers and especially CD8+ cells by controlling re-

sponsiveness to cytokines that signal through gc and Jak3 such

as IL-7 and IL-15 (Chong et al., 2003; Ramanathan et al., 2006).

Therefore, the central role of Socs1 activity in inhibiting inflam-

mation is partitioned between cell types and receptors. On one

hand, Socs1 regulates T cell development by inhibiting gc signal-

ing. On the other hand, once these cells enter the periphery and

begin secreting IFN-g, it is the IFN-g-responsive cells that must

be regulated by Socs1 to constrain the lethal IFN-g-mediated

inflammation.

Do Socs Proteins Have Substrates Other than Cytokine
Receptors?
The widespread use of microarrays for interrogating gene-

expression patterns in any number of biological systems has re-

vealed that increased Socs expression is a very common phe-

nomenon. The apparent ubiquity of Socs expression raises the

issue of the number, specificity, and relevance of the Socs client

proteins. As we have discussed above, Socs proteins have con-

firmed roles in cytokine-receptor signaling and more controver-

sial functions in regulating TLR signaling. A major question in this

area concerns the physiological targets of the Socs proteins in

diverse signaling scenarios. Potentially any phosphorylated tyro-

sine residue with sufficient affinity for a Socs SH2 domain could

be targeted for binding and potentially led to the protein-destruc-

tion machinery. However, as we have noted above, the number

of definitive Socs targets is so far predominantly limited to cyto-

plasmic tails of a subset of cytokine receptors. Are cytokine re-

ceptors the only targets of Socs proteins? The answer to this

question is harder to address than the determination of the

essential targets of, for example, Socs1 and Socs3, because

loss-of-function studies cannot readily expose the full range of

targets in a natural (i.e., nondeficient) setting. Therefore, Socs
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overexpression or experimentally regulated expression has the

potential to illuminate additional target proteins that might not

be observed as ‘‘essential’’ in genetic studies. However, promis-

cuous overexpression of Socs proteins has often led to mislead-

ing data because the increased expression of SH2 domains in

the cytoplasm allows binding to a huge range of tyrosine phos-

phorylated proteins. It is also important to consider the tight

temporal regulation of Socs expression by cytokines, hormones,

TLR agonists, and other factors that signal transient increases in

Socs expression not mirrored by constitutive overexpression.

Nevertheless, a number of potential Socs targets have been

identified that might regulate inflammatory cascades beyond

cytokine-receptor regulation.

An example of a non-cytokine-receptor substrate of Socs3

has been described in recent studies on chemokine-receptor

signaling (Le et al., 2007). The chemokine CXCL12 activates

CXCR4 and induces phosphorylation of FAK, a ubiquitous tyro-

sine kinase, in addition to other pathways. Le et al. have shown

that Socs3 is crucial to regulate the amounts of CXCL12-acti-

vated phospho-FAK because Socs3-deficient B cells have

increased amount of phospho-FAK. The consequence of

increased phospho-FAK in absence of Socs3 is accumulation

of immature B cells in the bone marrow mediated by increased

CXCR4 signaling. Link and colleagues have also postulated

that signals from the G-CSFR negatively regulate CXCL12

amounts in the bone marrow, thereby allowing escape of neutro-

phils into the circulation (Semerad et al., 2002). Therefore, the as-

signment of FAK as a substrate of Socs3 potentially explains pre-

vious data that suggested that Socs3 directly regulates CXCR4

to inhibit its activity (Soriano et al., 2002). Further work is need

to tie together how Stat3 and Socs3 control mature immune

cell numbers, leaving the bone marrow for the tissues.

The non-cytokine-receptor targets of the Socs proteins need

to be evaluated to the same standard as the Socs binding resi-

dues definitively identified in cytokine receptors: Mutations

must be generated to mutate the target tyrosine to create a pro-

tein that can no longer be inhibited by the suspect Socs protein.

Together with the conventional and conditional loss-of-function

alleles of Socs1 and Socs3, an arsenal of experimental ap-

proaches can be used to link Socs expression with a down-

stream effect.

Crosstalk between the Stat1-Socs1 and Stat3-Socs3
Modules
Many examples of cytokines stimulating the production of other

cytokines have been described, and in principle many of these

pathways can be, and are, controlled by feedback inhibition by

Socs proteins. The production of IL-10 in the myeloid lineage

and T cell lineages, however, offers new insights into a complex

regulatory hierarchy. As noted above, IL-10, via Stat3, is essential

for inhibiting inflammatory responses, especially those driven by

TLR signaling. Many groups have therefore focused on the when

and the how of IL-10 production in inflammation. Mice lacking

IL-10 in T cells recapitulate many of the chronic effects of com-

plete IL-10 deficiency including severe inflammatory bowel dis-

ease (Roers et al., 2004). However, T cell-specific IL-10-deficient

mice have identical responses to control mice in LPS challenge

experiments, whereas mice bearing a complete IL-10 deficiency

are extremely sensitive to LPS. These data suggest that cells
484 Immunity 28, April 2008 ª2008 Elsevier Inc.
other than T cells must make IL-10 that (partially) protects against

excessive acute inflammation. These non-T cells are myeloid-de-

rived cells and especially macrophages and dendritic cells that

are capable of prodigious IL-10 production. What are the signals

that control IL-10 production in myeloid cells? Addressing this

question is complicated by the diversity of stimuli and down-

stream signaling molecules that contribute to myeloid IL-10 pro-

duction including TLR agonists via TLRs and the p38 MAP kinase

pathways and zymosan via the dectin and ERK pathways, to list

a few. Despite this complexity, it is now clear that TLR-induced

interferons enforce further IL-10 secretion via a feed-forward

loop. Cheng and colleagues have demonstrated that TLR-medi-

ated activation of type I interferon production is essential for IL-10

synthesis: In the absence of the type I IFN-abR, TRIF, or IRF-3,

sustained IL-10 production by LPS-activated macrophages fails

(Chang et al., 2007). However, because IL-10 regulates its own

production by Stat3 (Cheng et al., 2003; Staples et al., 2007),

the feed-forward loop via Stat3 also fails. Therefore, myeloid lin-

eage cells have developed a complex feed-forward loop for IL-10

generation. The question is how these pathways are controlled in

vivo. Aspects of this complex regulatory pathway including the

role of IL-27 in driving IL-10 production via Stat1 and Stat3 are

covered in the review by Li and Flavell (2008). It is worth returning

to the findings noted above for the T cell-specific IL-10-deficient

mice because these mice emphasize that the T cell-specific

production of IL-10 is the main arbiter of the anti-inflammatory

response in chronic infection and that for tissues such as the

gut, continuous exposure to IL-10 is essential for ‘‘homeostatic’’

inflammation in the intestines (Denning et al., 2007). Therefore,

the multiple IL-10 reporter mice recently reported will prove deci-

sive in delineating who makes IL-10 and when during inflamma-

tion (Kamanaka et al., 2006; Maynard et al., 2007).

Conclusions
Despite the many tools we have to dissect the function of each

JAK, Stat, and Socs protein in each cell type involved in inflamma-

tory responses, we still know little about how cytokine signaling is

integrated in cells and tissues, especially when a cell receives

inputs from more than one cytokine: For example, defining how

a cell responds in vivo to signals from a pro- and anti-inflamma-

tory cytokine at the same time remains an unmet goal. We have

stressed that approaches such as ChIP-seq will be essential to

interpreting cytokine signaling from the point of ongoing gene-

expression changes that will be converted to functional changes

in cellular behavior. Despite the current limitations in understand-

ing the Jak-Stat-Socs pathways, the clinical application of

exogenous cytokine therapy or blocking individual cytokines

correlated with pro-inflammatory pathology is advancing rapidly.
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